Kümeleme
Veriler, bir canlı türünün özelliklerini tanımlar veya bir makinenin ne gibi sistemi olduğunu kaydeder. Her türlü nesne ve olgunun anlaşılması için ileri analiz, kararlar ve nihayetinde bir temel oluşturur. Bu veri analizlerinin sonucunda da bir gruplaşma veya kümeleme işlemi yapılması şarttır. Aynı grupta sınıflandırılan cisimler belirli benzer özellikler göstermelidir. Yeni bir nesneyi öğrenmek veya tanımlamak özelliklerini sınıflandırma konusunda insanlar için büyük önem taşır. Bu özellikleri benzerlik ve farklılıklarına göre diğer nesnelerle karşılaştırma yapılır. Diğer yandan, kümeleme tanımı üzerine bir fikir birliği olmamakla birlikte, “benzer özellikler gösteren nesnelerin birlikte gruplanması” şeklinde yorumlanabilir. Küme analizi, veri madenciliğinde önemli bir yere sahiptir. Benzerlik ölçüsüne dayanan koleksiyonların kümeler halinde örgütlenmesi problemini ele alır.
İlişkilendirme kuralları madenciliği
Veri madenciliğinde en çok kullanılan yöntemlerden biridir. Veri kümelerinde gizli olan örüntüleri ortaya çıkarmak için kullanılır. İlişkilendirme kuralları madenciliği, biyomedikal araştırmacılar içinde “Keşifsel Veri Analizi yapmak için ve veri kümelerindeki değişkenler nelerdir?” gibi soruların cevaplarını bulmak için yaygın olarak bu yöntemi kullanmaktadır.
Anomali algılama
Anomali algılama, bir veri kümesindeki tipik verilere uymayan örneklerin aranmasını ve tanımlanmasını içerir. Bu uygun olmayan örneklere genellikle anomaliler veya aykırı değerler denilir. Anormal durum tespiti genellikle, potansiyel dolandırıcılık faaliyetlerini tanımlamak ve soruşturmaları tetiklemek için finansal işlemlerin analizinde kullanılır. Anomali algılama akıllı telefonlar üzerinden bir örnekle belirtilebilir. Akıllı telefonların yaygınlaşması, kötü amaçlı uygulamaları da beraberinde getirmiştir. Son yıllarda kötü amaçlı yazılımlar Android telefonlar için büyük bir tehdit haline gelmiştir. Kötü amaçlı ağ davranışını tanımlamak üzere ağ trafiği analizi, veri madenciliği ile birleştirilebilir. Ağ trafiği özelliklerini ağ verilerinden çıkarmak için geliştirilen Apriori algoritması ile genel olarak operasyonel davranış tetikleyicileri aracılığıyla kötü amaçlı yazılım işlevleri ortaya çıkabilir. Oluşturulan model, bir anomaliyi etkili bir şekilde tespit edebilir, günlük akıllı telefon güvenlik kontrolü ve değerlendirmesi için kullanılabilir.
Tahmin
Bir tahmin modeli, bir girdi için bir etiket veya kategori olarak geri döndürdüğünde bir sınıflama modeli olarak bilinir. Sınıflama modelini eğitmek, her bir örneğin hedef olayın bu örnekte olup olmadığını belirtmek üzere etiketlendiği tarihi verileri gerektirir. Örneğin, müşteri sınıflandırması her müşteriye bir etiketin atandığı bir veri kümesi gerektirir. Veri seti, her bir müşteri için bu etiketi listeleyen, hedef özellik olarak bilinen bir öznitelik içerecektir.
https://tr.wikipedia.org/wiki/Veri_bilimi